Glossary
Acoustic
Acoustics
Ancohemitonic

Set Theory

Atonal Theory

Set Theory

Atritonic

Set Theory

Augmented
Avoid Note
Bebop
Blues
Cardinality

Set Theory

Cardinality Equivalence

Set Theory

Cent
Chord
Chord Formula
Chord Type
Chromatic Cluster

Set Theory

Chromatic Scale
Clock Diagram

Set Theory

Cluster-free

Set Theory

Cohemitonic

Set Theory

Common Practice
Compatibility
Complement

Set Theory

Consonance
Diatonic
Diminished
Double Augmented Hexatonic
Double Diminished (Octatonic)
Eleventh
Enharmonic Equivalent
Evenness

Set Theory

Fifth
Forte Number

Set Theory

Fourth
Guitar
Harmonic Major
Harmonic Minor
Harmony
Interval
Interval Class

Set Theory

Interval Content

Set Theory

Inversion
Involution

Set Theory

Jazz
Jazz Theory
Key
Keyboard
Lewin-Quinn FC-components

Set Theory

Limited Transposition

Set Theory

M-Relation

Set Theory

Major
Melody
Minor
Mode
Ninth
Note
OC-Equivalence

Set Theory

OPC-Equivalence

Set Theory

OPTC-Equivalence

Set Theory

OPTIC-Equivalence

Set Theory

OPTIC/K-Equivalence

Set Theory

OTC-Equivalence

Set Theory

Octatonic
Octave
Octave-Equivalence

Set Theory

Other Scales
Parallel Key
Pentatonic
Permutation Equivalence

Set Theory

Piano
Pitch
Pitch Class

Set Theory

Playing Outside
Prime Form

Set Theory

Quartal

Set Theory

Reharmonization
Relative Key
Rhythm
Roman Numeral Function
Root
Scale
Second
Semitone
Set Class

Set Theory

Seventh
Sixth
Slash Chords
Suspended
Symmetry

Set Theory

Tenth
Tertiary
Third
Thirteenth
Tonality
Tonic
Transposition
Triad
Tritone
Tritonic

Set Theory

Tuning Systems
Twelfth
Twelve-tone Equal Temperament
Unison
Voice Leading
Whole Tone
Whole-Tone Scale
Z-Relation

Set Theory



Pitch

Glossary

Pitch describes the frequency of notes, where quicker vibrations are higher frequency or higher in pitch (tighter, shorter strings, shorter pipes and smaller instruments) and slower vibrations are lower frequency or lower in pitch (semi-truck driving by, looser, longer strings, large instruments).

Exponentially increasing frequencies are perceived by the human ear linearly. Notes spaced an octave apart double in frequency, but sound like they are evenly spaced.

image showing organ pipes with exponentially increasing heights (looks like) versus pipes with linearly increasing heights (sounds like)

See Pitch & Intervals for how pitches relate to one another and where the chromatic scale comes from.